
Fusing Diversity in Recommendations in Heterogeneous
Information Networks

Sharad Nandanwar
Indian Institute of Science

sharadnandanwar@csa.iisc.ernet.in

Aayush Moroney
Indian Institute of Science

aayush.moroney@csa.iisc.ernet.in

M. N. Murty
Indian Institute of Science
mnm@csa.iisc.ernet.in

ABSTRACT
In the past, hybrid recommender systems have shown the power
of exploiting relationships amongst objects which directly or in-
directly e�ect the recommendation task. However, the e�ect of
all relations is not equal, and choosing their right balance for a
recommendation problem at hand is non-trivial. We model these
interactions using a Heterogeneous Information Network, and pro-
pose a systematic framework for learning their in�uence weights
for a given recommendation task. Further, we address the issue of
redundant results, which is very much prevalent in recommender
systems. To alleviate redundancy in recommendations we use Ver-
tex Reinforced RandomWalk (a non-Markovian random walk) over
a heterogeneous graph. It works by boosting the transitions to the
in�uential nodes, while simultaneously shrinking the weights of
others. �is helps in discouraging recommendation of multiple
in�uential nodes which lie in close proximity of each other, thus
ensuring diversity. Finally, we demonstrate the e�ectiveness of
our approach by experimenting on real world datasets. We �nd
that, with the weights of relations learned using the proposed non-
Markovian random walk based framework, the results consistently
improve over the baselines.
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1 INTRODUCTION
Recommender systems deal with the task of identifying objects
with which a user is likely to interact in the near future. �e objects
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could be movies to watch in case of user-movie recommendation,
products to purchase in user-product recommendation, users to
friend in user-user recommendation and so on. Most of the recom-
mender systems focus on cases where users are the recipients of
recommendations. We consider a more general de�nition where
both recommendations and recipients of recommendations could
be of any type. For example, matching the responsible genes to a
particular disease can be casted as a recommendation problem [7].
Formally, we de�ne the recommendation problem as follows

De�nition 1.1. Given a set of recipient objects S of type s , and a set
of recommendation objects T of type t , along with the snapshot
at time T of the preference matrix Ast encoding past preferences
of objects in S for objects in T , the recommendation problem is
to �nd a subset of T for each object in S with which it is likely to
interact at time (T + 1).

Collaborative �ltering, a key technique used in recommender sys-
tems primarily works by aggregating and ranking the preferences of
users with similar past behavior. Further, in a series of works [5, 19,
25, 28] it was observed that hybrid models utilizing auxiliary infor-
mation about the recommendation object and the recipient object
tend to do be�er. �is auxiliary information is generally present in
the form of interactions with objects of other types, which directly
or indirectly in�uence the recommendations under consideration.
More recently, Heterogeneous Information Networks (HIN) have be-
come popular tools for modeling such interactions. Heterogeneous
Information Network models the data using a graph where nodes
represent the objects and edges depict the relationships amongst
objects as in the underlying data. It is to be noted that unlike ho-
mogeneous network HIN can have more than one type of object
and more than one type of relationships amongst them. A more
detailed and formal de�nition of HIN is given by Sun et al. [20].
Markovian-walk based techniques like Personalized-Page Rank,
Katz similarity etc. o�er a powerful way of computing similarity in
a graph. However, �nding this similarity becomes non-trivial when
accounting for multiple types of relations. �e extent to which
the similarity between one type of object in�uences the similarity
between other type varies for each relation. We explain this using
a toy restaurant information network shown in Fig. 1. �e �gure
shows a network consisting of objects of type User, Restaurant,
Locality, and Cuisine. Consider the case where restaurants are to be
suggested to useru4. Conventional collaborative �ltering would fail
here as the restaurants preferred in the past by u4 are not available,
leading to a cold start problem. However, based on the locality of
user u4 it is possible to suggest restaurant r3. Similarly by looking
at the preferences made by friends ofu4 restaurants r2 and r4 can be
suggested. �e �nal set of recommendations are determined based
on how these preferences from various sources are combined.
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Figure 1: A toy Restaurant Information Network

One of the pressing issues in recommender systems is to do away
with monotonous yet relevant recommendations. Techniques like
collaborative �ltering emphasize on obtaining the recommenda-
tions lying in the query proximity. However, it has been noted [27]
that the utility of such recommendations is questionable. Too many
of such similar results can degrade the User experience. �is is easy
to follow from common human psychology point of view as the
system won’t o�er novelty for seasoned customers.
To further motivate the need of diversity in recommendation, we
illustrate using our running restaurant example. In the given sce-
nario, suppose it is chosen to recommend restaurants by exploiting
the preferences expressed by friends of the user. In such a case
the suggestions would be r2 followed by r4. However, it is worth
noting that both r2 and r4 o�er the same cuisine and share the same
locality. It is very much intuitive to say that only one out of these
two recommendations should be enough.
In this paper, we propose a random walk based approach for mak-
ing recommendation in the underlying heterogeneous information
network. To account for multiple types of relationships we cre-
ate a parameterized model, where each parameter describes the
role played by the corresponding relation in recommendation. For
learning these parameters, we deploy a probabilistic optimization
framework, wherein we systematically minimize the cross entropy
loss using the available ground truth. Conventional random walk
based approaches like personalized page-rank, etc. use aMarkovian-
random walk over the graph. And, the stationary distribution ob-
tained as a consequence of this Markovian-random walk is used
for recommendation. However, this could lead to multiple recom-
mendations which are in close vicinity of each other. To provide
diversity, it is favorable to have a non-Markovian Random walk
which uses a time variant transition matrix. We propose to use
vertex reinforced random walk (VRRW) for this. A�er each unit
time interval, VRRW updates the transition probabilities using a
monotonically increasing function of current arrival probabilities.
�is is done to further encourage the transition to nodes which
currently have high arrival probabilities. We summarize our key
contributions below:

• We make use of a sublinear Vertex Reinforced Random Walk,
for achieving diversity in recommendations.

• We describe a principled approach for learning parameters
of a multivariate non-Markovian random walk over a het-
erogeneous graph, by minimizing the cross entropy loss.

• We propose a stochastic gradient descent based algorithm for
the same.

• We show the e�ectiveness of the proposed approach over
state-of-the-art techniques using real world datasets.

�e rest of the paper is organized as follows; we brie�y survey
the related work in Sec. 2. Next, we introduce the necessary back-
ground, in Sec. 3, which is helpful for understanding this paper.
�e vertex reinforced random walk (VRRW) is introduced in Sec. 4.
In Sec. 5 we describe our framework for learning the importance
of di�erent relations in a recommendation task. We present ex-
perimental results in Sec. 6, followed by conclusion in Sec. 7. We
make the source code and datasets used in our experiments publicly
available at h�ps://github.com/sharadnandanwar/DivFuse.

2 RELATEDWORK
Diversity. Diversity in ranking has been studied very well in
machine learning and data mining literature [17]. However, these
studies have been largely concerned with the problem of ranking
the web documents. Carbonell et al. [1] were �rst to study the
interplay of relevance and novelty for ranking and summarization
of text documents. �ey proposed to maximize marginal relevance
for top ranked results. Marginal relevance is high if the document
is relevant to the query, while at the same time bearing minimal
similarity to other ranked results. Later Zhai et al. [26] in their
work undertook the study as subtopic retrieval problem, with an
aim to maximize the number of diverse subtopics amongst ranked
results. Based on the de�nition of diversity, the subsequent works
in this direction can be broadly classi�ed into 3 paradigms namely
i) content based, ii) novelty based, and iii) coverage based [3].
Diversity on Graphs. Grasshopper[29], one of the earliest works
in diversi�ed ranking on graphs, proposes a sequential algorithm to
compute a diverse set of nodes. At each intermediate stage the se-
lected nodes are switched to the absorbing state. DivRank [10] pro-
posed by Mei et al. introduced a framework for diversi�ed ranking
in networks. Prior approaches like Personalized Page-Rank [6]
considered a random walk model based on a Markovian process.
Unlike this, DivRank considers a vertex-reinforced random walk
model which is based on a non-Markovian process. �e number of
chances of arriving at a node increases with the number of visits to
that node, in this way a single node absorbs the score of its strongly
connected neighbors leading to a set of diverse nodes having high
ranks. An optimization perspective to the same problem is taken
in [22], wherein a goodness measure is proposed to capture rele-
vance and diversity along with an algorithm to maximize it. Dubey
et al [4] aim to �nd a diversi�ed set of centers (nodes) s.t. the
conductance from these centers to the rest of graph has maximum
entropy. Citing to the cubic complexity of the earlier approaches,
Li et al. [9] introduced an e�cient greedy algorithm with liner time
and space complexity.
Recommendations in Heterogeneous Networks. In homoge-
neous networks the problem of recommendation has been studied
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under various paradigms including ranking [8, 14], semi-supervised
learning in graphs [11, 12] etc. Unlike homogeneous networks, each
of the multiple relation types present in a heterogeneous informa-
tion networks carries a di�erent semantic meaning. In [13] it was
shown that application of techniques like Page-Rank [14], HITS [8]
etc. (which were developed for homogeneous networks) to HIN,
yields absurd results. Sun et al. [21] proposed PathSim, a meta-path
framework, for network based similarity search. However, it only
considered symmetric meta-paths. In [18] a generalized framework
HeteSimwas proposed which allows to compute similarity between
any two types of objects using any possible meta-path. Although
these works studied that di�erent meta-paths lead to di�erent rank-
ings, they do not provide a mechanism for choosing the meta-paths.
Relationship prediction models were introduced in [19] and [25]
which aim to learn the role of di�erent meta-paths in relationship
prediction task. Guerraoui et al [5] extend meta-path framework
for cross domain recommendation by learning alter-ego pro�les.
In line with random surfer model, Pham et al. [16] proposed to use
multivariate Markov chain to calculate node proximity w.r.t. a given
query node along with an optimization framework for learning the
in�uence weights between di�erent types of objects.

3 PRELIMINARIES
3.1 RandomWalk over Graph
Consider an undirected weighted graph G (V ,E) with set of ver-
ticesV = {v1,v2, . . . ,vn }, and set of edges E ⊂ V×V×R+; where
each edge is a 3-tuple (vi ,vj ,wi j ) s.t. vi , vj ∈ V and wi j ∈ R+ .
�en, the adjacency matrix A corresponding to G is de�ned as,

Ai j =

{
wi j if (vi ,vj ,wi j ) ∈ E

0 otherwise .

Given a graph G (V ,E), and an initial vertex x0 (∈ V ); a random
walk over the graph makes a random choice of transition to, one of
its neighboring vertices, x1; from x1 to, one of its neighboring ver-
tices, x2 and so on. �e transition probabilities to the neighboring
vertices are captured using a transition matrix P , which is derived
from the adjacency matrix as follows,

Pi j =
Ai j∑
j Ai j

It is worth noting here that the choice of transition to x2 when
at vertex x1 does not depend on the initial choice x0. Similarly,
the transition made from x2 will not depend on x1 and so on. �is
tends to form a Markov Chain [2]. Given the present, future doesn’t
depend upon the past.
For the random walk on G we assume that the initial vertex x0 is
drawn from some distribution Π0. Likewise, at time t , we denote
this distribution using Πt where Πt (v0) is the probability of being
at vertex v0 at time t . We call Πt as the state vector at time t . �e
distribution of the random walk is then expressed as,

Πt+1 = PTΠt

In a limiting sense (a�er in�nitely many iterations), the probability
of being at vertex vi does not depend on the initial choice. �is
limiting distribution is known as stationary distribution and is
denoted by Π∗.

3.2 Heterogeneous Information Network
Very o�en graphs involve more than one kind of objects interacting
with each other. We call such a graph having multiple types of
objects and relations as Heterogeneous Information Network (HIN)
which is de�ned [20] as follows,

De�nition 3.1. An Information Network is de�ned as a directed
graph G (V ,E) with an object type mapping function τ : V → O
and a link type mapping function ∅ : E → R where each object
v ∈ V belongs to one particular object type τ (v ) ∈ O, each link
e ∈ E belongs to a particular relation ∅(e ) ∈ R. When the type of
objects |O| > 1 or the type of relations |R | > 1, then the network
is called Heterogeneous Information Network.

If two links belong to the same relation type, the two links share the
same starting object type as well as the ending object type. However,
it is to be noted that the reverse is not true. Two relations can have
same starting as well as ending objects and can yet be di�erent. For
example, user-visits-restaurant, and user-likes-restaurant are two
di�erent relations.

3.3 Multivariate RandomWalk over HIN
In randomwalks over a homogeneous graph, each state is associated
with a single node or vertex. However, unlike this, in HIN each
state is associated with multiple objects one from each type. Hence,
for a random walk over HIN each state is a tuple with the size same
as that of the number of object types. For example, in restaurant
information network illustrated in Fig. 1 each state during random
walk consists of one object each of type restaurant, user, locality,
and cuisine.
For a HIN G (V ,E), we assume that the set of object types is O =
{o1,o2, . . . ,ok }. Further, for each object type, let the set of nodes
be O1, O2, . . ., Ok , such that O1

⋃
O2

⋃
. . .

⋃
Ok = V . �us, each

state s of the randomwalk belongs to O1×O2× . . .×Ok . We use Πt
j

(a |Oj | × 1 vector) to denote the state vector of nodes, with object
type oj at time instance t . �e state vector of type oj at time (t + 1)
is in�uenced by state vectors at time t of all other object types with
which it shares a relation present in R. �e transition matrix for
each relation is created using the corresponding adjacencymatrix of
relation in a manner similar to that of the homogeneous graph. We
denote a relation R using (r ,oi ,oj ) where r is the unique relation
identi�er, oi is the starting object type and oj is the ending object
type. Further, to denote the transition matrix of the same we use
Pr . �e rule of random walk is then,

Π
(t+1)
j =

∑
(r ,i,j )∈R∗,j

αr P
T
r Πt

i for j = 1,2, . . . ,k (1)

s.t. αr ≥ 0 for all r ∈ R, and∑
(r ,i,j )∈R∗,j

αr = 1 for j = 1,2, . . . ,k

where, R∗,j (⊂ R) is set of relations having oj as the ending object.
Eqn. 1 expresses the state probability distribution at time (t + 1)
as a weighted combination of PTr Πt

i for all (r ,i, j ) ∈ R∗,j . �e
constraints on αr ensure that the state vector at time (t +1) remains
a valid probability distribution for each object type. For a given
HIN, if the relations can be uniquely identi�ed using starting and
ending object (i.e. there does not exist any two relations sharing
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same starting and ending object) then, the Eqn. 1 can be expressed
in matrix notation as follows


Πt+1
1

Πt+1
2
...

Πt+1
k



=



α11PT11 α12PT12 . . . α1kP
T
1k

α21PT21 α22PT22 . . . α2kP
T
2k

...
...

. . .
...

αk1P
T
k1 αk2P

T
k2 . . . αkkP

T
kk





Πt
1

Πt
1
...

Πt
k


(2)

Πt+1 = P̃ Πt

In the above, for each relation (r ,i, j ) we use ij as subscript instead
of r , as it can uniquely identify the relation as mentioned above. In
case, where relations could not be uniquely identi�ed using starting
and ending object, each sub-matrix in P̃ is a weighted combination
of transition matrices sharing corresponding starting and ending
objects. It can be veri�ed that Eqn. 2 has a unique solution which
is a positive vector corresponding to eigenvalue of 1. For further
details on this, we refer readers to the text [2]. Unlike homogeneous
case, Πt here is not a probability distribution, however, Πt

j ∀j, is a
probability distribution vector.

4 NON-MARKOVIAN RANDOMWALK
We now introduce the non-Markovian random walk, which we
exploit in our work to ensure diversity.
Conventional random walk models like Page-Rank �nd a stationary
distribution assuming that the transition probabilities remain con-
stant over the entire period of time. In practice, this may not be true.
For example, consider two restaurants which are open at the same
time in a locality, and o�er same cuisine. �e �rst one, however
o�ers a be�er deal for the price customers pay. It is quite natural,
that even though on initial days both restaurants were witnessing
same number of footfalls, slowly there will be a noticeable change.
�e �rst restaurant will eat away the business of the second, and
there will be a signi�cant di�erence in the number of footfalls. In
line with this argument, it is justi�ed to have a transition matrix
which changes with time.
In order to achieve this we propose to use Vertex-Reinforced Ran-
dom Walk (VRRW). First introduced by Pemantle [15], the VRRW
is based on the idea that the future transition probabilities are in-
�uenced by the number of times the ending node has been visited
in the past. We �rst explain VRRW for a homogeneous network
G (V ,E) and then generalize it to HIN. For a node v ∈ V , let the
number of times it has been visited by random walk (x0,x1, . . . ,xt )
up to time t be Z t (v ), then

Z t (v ) = Z (t−1) (v ) + 1(xt = v )

= Z 0 (v ) +
t∑
i=0

1(xi = v )
(3)

where, Z 0 (v ) is the initial visit count of vertexv , before the random
walk has started. In our study, we consistently take Z 0 (v ) as zero.
�e transition probabilities for a vertex reinforced random walk
(x0,x1, . . . ,xt ) are then updated as follows

P t+1 (vi ,vj ) =
P0 (vi ,vj )Z t (vj )∑

vk ∈V

P0 (vi ,vk )Z
t (vk )

(4)

where P0 is the initial reinforcement matrix at time t = 0. It is
di�cult to compute Z t (vj ) at time t based on a single instance of
random walk. In [10], it was proposed to compute Z t (vj ) based on
multiple instances of randomwalk starting with same con�guration
at time (t − 1). �is amounts to using E[Z t (vj )] in place of Z t (vj ).
Taking expectation of Eqn. 3 on both sides, we have

E[Z t (v )] = E[Z 0 (v )] +
t∑
i=0

Πi (v )

=

t∑
i=0

Πi (v ) {pu�ing Z 0 (v ) = 0}
(5)

�en, Eqn. 4 can be accordingly expressed as,

P t+1 (vi ,vj ) =
P0 (vi ,vj )E[Z t (vj )]∑

vk ∈V

P0 (vi ,vk )E[Z t (vk )] (6)

Where, E[Z t (v )] is computed using Eqn. 5.
�e reinforcement de�ned in Eqn. 4 is called as linear reinforce-
ment. In Linear VRRW, the modi�ed transition probabilities are
linearly proportional to the number of times the vertex has been
visited in the past. It was shown, in [23], that in a linear VRRW
there is only a �nite set of nodes which is in�nitely visited with
positive probability. �is characteristic is not desired from a rec-
ommendation perspective as localizing on a �nite set of nodes will
eventually lead to lack of unseen or new recommendations.
Deviating from [10], we propose to use sublinear vetex reinforced
random walks here. Transition probabilities in sublinear VRRW
are de�ned as

P t+1 (vi ,vj ) =
P0 (vi ,vj )

(
Z t (vj )

)ρ∑
vk ∈V

P0 (vi ,vk )
(
Z t (vk )

)ρ (7)

where 0 < ρ < 1. It is to be mentioned that the same is known as
superlinear VRRW when ρ > 1. For the sublinear case, [24] shows
that the random walk almost surely visits, in�nitely many nodes
in�nitely o�en.
Similar to the case of linear reinforcement, for sublinear reinforce-
ment

(
Z t (vk )

)ρ can be approximated using E[
(
Z t (vk )

)ρ ], which
can be computed as follows,

E
[(
Z t (v )

)ρ ]
= E

[(
Z 0 (v )

)ρ ]
+

t∑
i=0

(
Πi (v )

)ρ
=

t∑
i=0

(
Πi (v )

)ρ
{pu�ing Z 0 (v ) = 0}

(8)

Now that we have explained the sublinear VRRW for homogeneous
network, we extend it to more general HIN. Given a HIN with set
of object types O = {o1,o2, . . . ,ok } and set of relation types R,
then for each relation type (r ,oa ,ob ) ∈ R, the transition matrix
corresponding to sublinear VRRW is de�ned as follows,

P t+1r (vi ,vj ) =
P0r (vi ,vj ) E

[(
Z t (vj )

)ρ ]∑
vk ∈V

P0r (vi ,vk ) E
[(
Z t (vk )

)ρ ] (9)
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and, E
[(
Z t (v )

)ρ ]
=

t∑
i=0

(
Πi
b (v )

)ρ , where b is the object type

obtained using the mapping τ : V → O i.e. τ (v ) = b.

5 LEARNING THE PARAMETERS
Sec. 3.3 explains the multivariate random walk over HIN. However,
determining the parameter αr for each relation in R is a non-trivial
task. In this section, we propose a principled approach to learn
these parameters using the given snapshot of a HIN. Recalling our
recommendation task, it is worth noting that the plain random
walk model explained in Sec. 3.3 does not help here because it does
not capture personalization. Random walk with restart provides a
mechanism to personalize the recommendations for a given query.
Random walk with restart at each step, either transitions to one of
the randomly chosen neighbors, or jumps back to one of the query
nodes. In a random walk over HIN G (V ,E), with set of object
types O and set of relation types R; for object type oj , we use βj to
denote the probability of jumping to one of the initial query nodes.
�e rule of random walk expressed in Eqn. 1 is then accordingly
modi�ed as

Π
(t+1)
j =

∑
(r ,i,j )∈R∗,j

αr
(
P tr

)T
Πt
i + βjqj for j = 1,2, . . . ,k

s.t. αr ≥ 0 for all r ∈ R,

βj ≥ 0 for j = 1,2, . . . ,k

*.
,

∑
(r ,i,j )∈R∗,j

αr
+/
-
+ βj = 1 for j = 1,2, . . . ,k

(10)
where qj is the probability vector corresponding to initial query dis-
tribution for object type oj . �e transition matrix P tr is for sublinear
VRRW and is updated using Eqn. 9.

5.1 Cross Entropy Loss Minimization
We next focus our a�ention on learning the parameters α ’s and β ’s
in Eqn. 10. For this, we introduce a probabilistic learning frame-
work based on cross entropy cost function. To recall, for a given set
of parameter values α ’s and β ’s there exists a stationary probability
distribution Π∗j for each object type oj . �e stationary distribution
is obtained by iterative application of Eqn. 10. Although, the sta-
tionary distribution Π∗j is obtained for all object types, at the end
we are only interested in the distribution of target object type (the
object type concerning the recommendations). We refer to this
distribution as Π∗tarдet . However, for the sake of brevity, here in
this section 5.1 we make an abuse of notation, and will write Π
instead of Π∗tarдet .
For a query q = {q1,q2, . . . ,qk }, we use Πq to denote the stationary
distribution, and Θq to denote the observed response for the target
objects. It is to be mentioned here that in majority of the cases
the observations are only available in the form of binary responses
(whether the recommendation was useful or not) but in a few cases
like movie recommendation to users, a rating on a ordinal scale is
also available.

Given Πq and Θq for a query q, for each pair (vi ,vj ) of target
objects, we de�ne the following

pi j = 1
(
Θq (vi ) > Θq (vj )

)
oi j = Πq (vi ) − Πq (vj ), and

pi j =
eλoi j

1 + eλoi j
, where λ is a const. > 0

pi j is the actual probability of node vi being ranked higher than
node vj . However, unfortunately it is di�cult to obtain this proba-
bility for each pair. To address this, we have de�ned pi j as 1 if vi
is having higher a�nity than vj in observed response Θq . Simi-
larly, the probability of recommending node vi prior to node vj is
obtained by using the sigmoid function on the di�erence in corre-
sponding values in stationary probability distribution Πq . We then
de�ne the cross entropy cost for pair (vi ,vj ) as follows,

Ci j = −pi j logpi j − (1 − pi j ) log(1 − pi j )

= −λpi joi j + log(1 + eλoi j )
{substituting for pi j }

(11)

�e loss corresponding to a query q is then de�ned as the sum of
Ci j over all possible pairs (vi ,vj ), i.e.

Lq =
∑

(vi ,vj )

Ci j s.t. τ (vi ) = τ (vj ) = target type

We now compute the gradient ofCi j with respect to the parameters
to be learned. Gradient of Ci j , w.r.t. αr corresponding to each
relation in R is computed as

∂ Ci j

∂αr
= *
,
−λpi j +

λeλoi j

1 + eλoi j
+
-

(
∂ Πq (vi )

∂αr
−
∂ Πq (vj )

∂αr

)
. (12)

Gradient w.r.t. βj for j = 1,2, . . . ,k is also computed in a similar
fashion, which we omit writing here.

Figure 2: Schema diagram of Meetup dataset used in
experiments.

5.2 Partial Derivative of Stationary
Distribution

We further take a closer look at computing ∂ Πq (v )
∂αr

(
and ∂ Πq (v )

∂βj

)
.

Although we provide a general framework for recommendation
in any heterogeneous information network; for the ease of under-
standing, we describe computation of partial derivative of stationary
probability distribution Π using Meetup schema shown in Fig. 2.
We consider the task of recommend groups to the user. �e station-
ary probability distribution corresponding to the Meetup schema
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is,
Π∗U = αTU PTTU Π∗T + αGU PTGU Π∗G + αEU PTEU Π∗E + βU qU

Π∗T = αGT PTGT Π∗G + αUT PTUT Π∗U + βT qT

Π∗G = αEG PTEG Π∗E + αUG PTUG Π∗U + αTG PTTG Π∗T + βG qG

Π∗E = αU E PTU E Π∗U + αGE PTGE Π∗G + αV E PTV E Π∗V + βE qE

Π∗V = αEV PTEV Π∗E + βV qV

where the subscripts U , T , G, E, and V denote user, tag, group,
event, and venue object type respectively. Likewise, the subscript
TU denotes the relation users-associated with-tag and so on. By
looking at Eqn. 12, it appears that only gradient of stationary dis-
tribution of object to be recommended (group) is of interest to us.
However, from above it is easy to verify that there exists a cyclic
dependency amongst all the stationary distributions and hence
their gradients. Due to this, it is required to �nd gradients of all
stationary distributions. We illustrate gradient w.r.t. one parameter
αTU below
∂ Π∗U
∂ αTU

= αGU
∂ PTGU Π∗G
∂ αTU

+ αEU
∂ PTEU Π∗E
∂ αTU

+ αTU
∂ PTTU Π∗T
∂ αTU

+ PTTU Π∗T

∂ Π∗T
∂ αTU

= αGT
∂ PTGTΠ

∗
G

∂ αTU
+ αUT

∂ PTUT Π∗U
∂ αTU

∂ Π∗G
∂ αTU

= αEG
∂ PTEGΠ

∗
E

∂ αTU
+ αUG

∂ PTUGΠ
∗
U

∂ αTU
+ αTG

∂ PTTGΠ
∗
T

∂ αTU

∂ Π∗E
∂ αTU

= αU E
∂ PTU EΠ

∗
U

∂ αTU
+ αGE

∂ PTGEΠ
∗
G

∂ αTU
+ αV E

∂ PTV EΠ
∗
V

∂ αTU

∂ Π∗V
∂ αTU

= αEV
∂ PTEV Π

∗
E

∂ αTU
,

(13)
Partial derivatives w.r.t. the other parameters can be obtained in a
similar manner.
Unlike the case of conventional random walk, in VRRW the tran-
sition matrix keeps changing during the random walk, and is de-
pendent upon the stationary probability distribution of the ending
node. Hence, the computation of partial derivatives like ∂ P T

TU Π∗T
∂ αTU

is not straightforward and is computationally more involved. Using
the de�nition of sublinear reinforced random walk, the transition
matrix is modi�ed based on the number of times the ending object
has been visited. �is has been speci�ed in Eqn. 8. However, at
convergence (as the length of walk tends to in�nity), the same can
be approximated using the stationary distribution. �us,

E
[
(Z ∗ (v ))ρ

]
≈

(
Π∗b (v )

)ρ for all v s.t. τ (v ) = b.
Without loss of generality, we consider a relation having start-
ing object of type x and ending object of type y, with stationary
distributions Πx and Πy respectively. We denote the initial tran-
sition matrix for this relation using P0

(
=

[
P0i j

]
n×m

)
. �en, the

reinforced transition matrix P at convergence is given by
P = S−1 P0 Y ρ

where,

S = diaд *
,

∑
i
P01i

(
Πy (i )

)ρ
,
∑
i
P02i

(
Πy (i )

)ρ
, . . . ,

∑
i
P0mi

(
Πy (i )

)ρ+
-

and Y = diaд
(
Πy (1),Πy (2), . . . ,Πy (n)

)
. We describe the partial

derivative of PTΠx w.r.t. the parameter α .

∂ PTΠx
∂ α

= PT
∂ Πx
∂ α

+ ρ Y ρ−1 PT S−1Πx �
∂ Πy

∂ α

− ρ Π
ρ−1
y � ΠxS

−2 P Y ρ−1
∂ Πy

∂ α

where � is the element wise product or Hadamard product. �e
above is used in partial derivatives speci�ed in Eqn. 13 for Meetup
schema. It is easy to follow that upon substitution, the equations
in 13 form a linear system of equations. �is can be e�ciently
solved using linear solvers. Also, there always exists a solution to
this system of equations. However, due to lack of space we omit
the proof of this.

5.3 Learning Algorithm
Wenow describe the algorithm for learning the required parameters.
For a given HIN, the algorithm starts by computing the initial
transition probability matrix corresponding to each relation type.
Also, the parameters are initialized uniformly in the beginning. We
use the projected stochastic gradient descent method for learning
the optimal values of the parameters. In each epoch we pick a
random subset of k queries (mini-batch of size k), and compute the
stationary probability distribution corresponding to it. Next, we use
these stationary probability distributions along with values of the
parameters known from the previous iteration to �nd the gradient
of stationary distribution with respect to each parameter. �e
gradient corresponding tok queries in a epoch are accumulated, and
parameters are updated using gradient descent with step size η/c .
Here, η is the speci�ed learning rate parameter, and c is the current
epoch count. To ensure the constraints in Eqn. 10, we project the
obtained parameter values to R+

⋃
{0}. Also, we normalize the new

learned parameters, such that the parameters for incoming relations
to an object along with the corresponding query parameter sum
upto 1.
Algorithm 1 gives the pseudocode for the above described approach.

6 EXPERIMENTS
We empirically evaluate the e�ectiveness of the proposed approach
against the state-of-the-art techniques and other baselines. On
Meetup schema shown in Fig. 2, we consider the following recom-
mendation problems:

• Recommending Groups to User.
• Recommending Tags to Group.

We speci�cally choose these tasks as intuitively it sounds appealing
to have diversity in the �rst task and no diversity in the second
task.

6.1 Dataset
For our experiments, we crawled the data from theMeetup website1.
Meetup is an online social networking website, which helps users
with similar interests to organize and conduct an online/o�ine
event. Users can join the groups based on their interests and can
conduct or participate in events organized by the group.

1www.meetup.com
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Algorithm 1 Learn Parameters using Stochastic Gradient Descent.

Input:
G (V ,E) . Given HIN snapshot
Q . Set of queries
d . Recommendation object type
Θ . Set of observed responses corresponding to queries
k . Sample size for SGD

Output:
Λ = [α , β] . Learned parameters

1: A← {Ar : Ar is adj. matrix for each relation in G (V ,E)}
2: P ← {Pr : Pr is prob. transition matrix for each Ar }
3: Λ0 = [α0, β0]T ← Init. all relations and query params.
4: i ← 1 . Maintains current SGD iteration count
5: while not converged do
6: Q̂ ← Random subset of Q of size k
7: Θ̂← subset of Θ corresponding to Q̂
8: grad← 0
9: for each q ∈ Q̂ do
10: Π∗q ← compute stationary distribution using

Eqn. 10
11: for each parameter αr do
12: Compute ∂ Π∗q

∂ αr
as in Eqn. 13

13: Use ∂ Π∗q
∂ αr

to compute ∂ Lq
∂ αr

=
∑

(vi ,vj )

∂ Ci j

∂ αr

14: дrad (αr ) ← дrad (αr ) +
∂ Lq

∂ αr

15: Λi ← Λi−1 −
η

i

grad
‖grad‖

16: Λi ← Project each element in Λi to R+
⋃
{0}.

17: Normalize Λi to ensure constraints in Eqn. 10.
18: i ← i + 1
19: return Λt = [α t ,βt ]

City Users Groups Events Tags Venues
Bangalore 179,415 2,304 36,525 14,939 4,213
Hyderabad 117,309 997 32,527 10,520 2,453

Table 1: Statistics of Meetup dataset for di�erent cities.

For two cities namely Bangalore, and Hyderabad, we collected the
raw data using the Meetup API. Further, we considered the time
range from the day Meetup was introduced up to July 31, 2017. For
each city we collected the list of Meetup groups they have. �en,
for each group we collected the tags and users associated with
them and information about events that the group has conducted.
Next, for the events we collect the venues where they have been
conducted and list of users a�ending the event. Using a�endance
of events we only crawled information about the users, who have
a�ended at least one event. We provide the statistics of the raw
dataset in Table 1.

6.2 Algorithms
In addition to the proposed technique (Div-HeteRec), we consider
two state-of-the-art techniques and two more related baseline algo-
rithms to show the e�ect of diversity. We describe these techniques
below:
(1) Random Walk with Restart (RWR): In this conventional ran-
domwalk with restart model there is no distinction between various
node types. All the relation types and node types are treated uni-
formly and a homogeneous network is created. Corresponding to
the given query, it then computes a single stationary distribution
which is later exploited to make recommendations.
(2)Collaborative Filtering usingNMF (NMF): Here Non-Negative
Matrix Factorization is used to implement the conventional col-
laborative �ltering model. For Groups to User and Tags to Group
recommendation it takes the Group-User and Tag-Group matrices
respectively and applies NMF on them. Empirically the number of
dimensions (k) is �xed to be 20. A�er factorization, the matrix is
reconstructed and the magnitude of entries which were missing
earlier is used to make recommendations.
(3)UniformHeterogeneousRecommendation (Uni-HeteRec):
�is is the completely stripped o� version of our proposed approach.
�e baseline helps in highlighting the e�ectiveness of introducing
the diversity and learning the in�uence of relations. �e parameters
α ’s and β ’s are initialized such that for an object all its dependencies
get equal importance.
(4)LearnedHeterogeneousRecommendation (Learn-HeteRec):
Unlike in our proposed approach, here the transition matrix is static.
However, we learn the optimal parameter values using the frame-
work described in Sec. 5.1. It is to be noted that this approach is
di�erent from the HeteRS mentioned in [16] as the underlying loss
function is di�erent.
For sublinear reinforcement in Div-HeteRec we use ρ = 1/2. Also,
with ρ = 0, Div-HeteRec is same as Learn-HeteRec.

6.3 Setup
Taking a glance at the data, we found the data to be highly sparse,
indicating that the use of Meetup has not matured still in the cities
considered. �e number of users are above 100k for the considered
cities, but surprisingly very few of these users are actively using the
portal. Because of this reason, we found it helpful to �lter o� the
not so useful objects by preprocessing the data. We remove all the
users wo have a�ended less than 5 events over this entire duration.
Similarly for groups we remove those which had conducted less
than 5 events. Also, we remove events which had less than 5 people
a�ending them.
A�er preprocessing the data we partition it into train, validation,
and test sets. We describe the strategy adapted for partitioning
next. We partition the given data into 60%, 20%, and 20% as train,
validation and test dataset respectively. While partitioning we only
consider the relation concerning the recommendation problem. For
example, for group to user recommendation we perform the split
only on user-group adjacency matrix (and correspondingly group-
user). However, speci�cally for group to user recommendation task,
a�er moving the groups for a user to test and validation set, we also
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Algorithm Precision@k Recall@k nDCG@k
k = 1 k = 2 k = 3 k = 5 k = 10 k = 1 k = 2 k = 3 k = 5 k = 10 k = 1 k = 2 k = 3 k = 5 k = 10

RWR .1195 .1064 .0958 .0819 .0635 .0656 .1172 .1561 .2186 .3352 .1195 .1323 .1461 .1698 .2104
NMF .0054 .0040 .0043 .0076 .0065 .0018 .0024 .0050 .0170 .0279 .0320 .0382 .0439 .0528 .0679

Uni-HeteRec .1150 .1120 .1045 .0854 .0651 .0634 .1238 .1745 .2376 .3516 .1150 .1366 .1562 .1797 .2196
Learn-HeteRec .1544 .1295 .1156 .0945 .0698 .0895 .1469 .1883 .2511 .3656 .1544 .1656 .1806 .2034 .2426
Div-HeteRec .1600 .1317 .1177 .0956 .0713 .0906 .1471 .1941 .2601 .3767 .1600 .1676 .1843 .2085 .2494

Table 2: Group to User Recommendation for Bangalore Meetup dataset.

Algorithm Precision@k Recall@k nDCG@k
k = 1 k = 2 k = 3 k = 5 k = 10 k = 1 k = 2 k = 3 k = 5 k = 10 k = 1 k = 2 k = 3 k = 5 k = 10

RWR .1810 .1392 .1199 .0973 .0724 .1188 .1838 .2304 .2987 .4121 .1810 .1931 .2101 .2375 .2792
NMF .0018 .0009 .0015 .0046 .0046 .0010 .0010 .0029 .0148 .0244 .0443 .0510 .0615 .0749 .0903

Uni-HeteRec .1582 .1240 .1027 .0835 .0613 .1057 .1630 .2014 .2621 .3696 .1582 .1710 .1838 .2080 .2480
Learn-HeteRec .1791 .1484 .1265 .1021 .0729 .1197 .1943 .2450 .3100 .4141 .1791 .2012 .2200 .2510 .2942
Div-HeteRec .2031 .1588 .1301 .1024 .0737 .1345 .2039 .2465 .3134 .4270 .2031 .2166 .2302 .2560 .2969

Table 3: Group to User Recommendation for Hyderabad Meetup dataset.

Algorithm Precision@k Recall@k nDCG@k
k = 1 k = 2 k = 3 k = 5 k = 10 k = 1 k = 2 k = 3 k = 5 k = 10 k = 1 k = 2 k = 3 k = 5 k = 10

RWR .0046 .0046 .0046 .0037 .0046 .0023 .0046 .0069 .0084 .0276 .0046 .0046 .0060 .0069 .0136
NMF .0046 .0023 .0015 .0065 .0119 .0023 .0023 .0023 .0169 .0729 .0184 .0166 .0159 .0196 .0264

Uni-HeteRec .0092 .0092 .0168 .0147 .0143 .0069 .0099 .0322 .0445 .0852 .0092 .0110 .0223 .0283 .0434
Learn-HeteRec .1244 .1037 .0875 .0654 .0484 .0883 .1329 .1651 .1997 .2887 .1244 .1349 .1481 .1648 .1976
Div-HeteRec .0552 .0483 .0399 .0350 .0253 .0399 .0637 .0791 .1059 .1444 .0553 .0629 .0693 .0829 .0981

Table 4: Tag to Group Recommendation for Bangalore Meetup dataset.

Algorithm Precision@k Recall@k nDCG@k
k = 1 k = 2 k = 3 k = 5 k = 10 k = 1 k = 2 k = 3 k = 5 k = 10 k = 1 k = 2 k = 3 k = 5 k = 10

RWR .0000 .0000 .0034 .0031 .0015 .0000 .0000 .0077 .0098 .0098 .0000 .0000 .0041 .0052 .0052
NMF .0000 .0000 .0000 .0000 .0018 .0000 .0000 .0000 .0000 .0077 .0128 .0095 .0122 .0154 .0207

Uni-HeteRec .0383 .0255 .0204 .0174 .0120 .0239 .0289 .0341 .0443 .0643 .0383 .0344 .0343 .0397 .0469
Learn-HeteRec .2071 .1483 .1159 .0879 .0590 .1189 .1670 .1994 .2570 .3341 .2071 .1858 .1922 .2187 .2479
Div-HeteRec .1176 .0805 .0605 .0485 .0322 .0635 .0886 .9846 .1343 .1777 .1176 .1013 .0994 .1164 .1332

Table 5: Tag to Group Recommendation for Hyderabad Meetup dataset.

remove the events associated with a group which were a�ended
by the user to maintain consistency. Even a�er preprocessing task
we will be le� with users associated with less than 5 groups. For
performing the split we only consider the users who are members
of at-least 5 groups, while the other users are retained in train set.
Similar is the case with tag to group recommendation where we
only consider groups with at-least 5 tags for performing the split.
For evaluation, we use Precision, Recall, andNormalizedDiscounted
Cumulative Gain as the measures for both the tasks. For a given
query q with set of observed responses Oq and set of recommen-
dations Rq . Precision is de�ned as |Oq

⋂
Rq |/|Rq |, and Recall as

|Oq
⋂
Rq |/|Oq |. �e nDCG measure is computed as

nDCG =
1

IDCG

|Rq |∑
i

reli
log2 (i + 1)

where, IDCG is the ideal discounted cumulative gain which consid-
ers the set of relevant documents only and is de�ned as,

IDCG =

|Rq |∑
i

reli
log2 (i + 1)

It should be noted that unlike nDCG where reli is the relevance
of ith recommendation in Rq , in IDCG reli is the relevance of ith
recommendation in Oq . For precion@k , recall@k, and nDCG@k
we consider Rq as the set of top k recommendations only.

6.4 Results and Discussion
For the Meetup dataset, we present the results for Group to User
recommendation in Table 2 and Table 3, and results for Tag to
Group recommendation in Table 4 and Table 5 for both the cities
respectively.
We �rst analyze the results for Group to User recommendation. To
start with, conventional collaborative �ltering model NMF performs
worst amongst all. �is reasserts the fact that exploiting axillary
information helps in recommendation task. Assigning equal im-
portance to all relations seems to perform worse than the plain
random walk with restart (RWR) model. However, when the weights
are learned using the proposed framework the performance im-
proves. Further, it is easy to observe from Table 2 and Table 3,
that the diverse recommendations made using Div-HeteRec out-
performs all other approaches. �e improvement achieved by using

Technical Presentation WSDM’18, February 5-9, 2018, Marina Del Rey, CA, USA

421



Div-HeteRec over Learn-HeteRec is more pronounce in the Hy-
derabad Meetup dataset. �is is due to the fact that, Bangalore has
more of information technology (IT) culture and majority of the
groups are pertaining to IT only. Hence, there is a lack of diver-
sity amongst groups in Bangalore. As a result of this diversity in
recommended groups does not make much sense for this data.
Next we analyze the results for Tag to Group recommendation.
Both RWR and Collaborative Filtering using NMF fail drastically in
this task. Also, the Uni-HeteRec model which was performing
satisfactorily in previous task fails. �e same (uniform) parameter
values which were doing reasonably well in previous task do not
work in this se�ing. �is emphasizes the fact that, for di�erent
tasks, di�erent relations carry di�erent priorities. However, unlike
the previous case where Div-HeteRecwas performing best here we
�nd that Learn-HeteRec outperforms all other approaches. �is is
in-line with the intuition that the tags of groups are closely related
to each other and suggesting a diverse set of tags should hurt the
performance.
Summarizing our observations, we �nd that

• Making diverse recommendations in cases where they are
intuitive also improves the performance of a recommender
system.

• learning the importance of relations always helps; di�erent
recommendation tasks will require di�erent weightages to
be assigned to various relations.

7 CONCLUSION
In this paper, we introduced the need for diversity in recommenda-
tions in a heterogeneous information network (HIN). We proposed
a sublinear vertex reinforced random walk based mechanism for
integrating diversity. �is emulates rich ge�ing richer mechanism
by increasing transitions to nodes which have been visited more
frequently in the past. Further, in a HIN, di�erent relation types
have signi�cantly di�erent priorities for a given recommendation
task. In a multivariate random walk framework we proposed a
cross entropy cost based learning framework for systematically
learning these priorities. Finally, we demonstrated the e�ectiveness
of our approach using real-world Meetup dataset. So, naturally for
recommendations requiring diversity the proposed Div-HeteRec
is performing the best and for situations where diversity is not
essential, the proposed Learn-HeteRec is ideally suited. It is inter-
esting to explore, in the future, a hybrid model that aptly combines
both diverse and non-diverse requirements. We make the code and
datasets used in our experiments publicly available.
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